M.Sc. (Part-I) (Mathematics) (C.B.C.S. Pattern) Sem-II

Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Prove that the shortest distance between two points in a plane is a straight line.
b) By the minimum surface of revolution obtain the equation of catenary

$$
x=a \cosh \left(\frac{y-b}{a}\right)
$$

OR

c) Show that the hoop rolls down the inclined plane with only one half the acceleration it would have slipping down a frictionless plane and the frictional force of constraints is $\lambda=\frac{M \cdot g \sin \phi}{2}$
d) Discuss the brachistochrone problem to find the curve joining two points.

UNIT - II

2. a) Deduce the Hamilton's equation of motion of a particle of mass m in cartesian coordinates.
b) State and prove the principle of least action.

OR

c) Obtain the Hamilton's canonical equations,

$$
\begin{aligned}
& \frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{i}}}=\dot{\mathrm{q}}_{\mathrm{i}}, \frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{i}}}=-\dot{\mathrm{p}}_{\mathrm{i}} \\
& \frac{\partial \mathrm{H}}{\partial \mathrm{t}}=\frac{-\partial \mathrm{L}}{\partial \mathrm{t}}
\end{aligned}
$$

d) The kinetic and potential energies of a particle are respectively given by
$\mathrm{T}=\frac{1}{2} \mathrm{mi}^{2}, \mathrm{~V}=\frac{1}{\mathrm{r}}\left(1+\frac{\mathrm{r}^{2}}{\mathrm{c}^{2}}\right)$
Find the Hamiltonian of the system and show that the system is not conservative.

UNIT - III

3. a) Show that fundamental Poisson brackets are invariant under canonical transformation. condition MJM $=\mathrm{J}$.

OR

c) If $F_{1}(q, Q, t)$ and $F=F_{2}(q, p, t)$ are generating functions of canonical transformation then prove that
i) $\quad \mathrm{K}=\mathrm{H}+\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{t}} \quad \&$
ii) $\mathrm{K}=\mathrm{H}+\frac{\partial \mathrm{f}_{2}}{\partial \mathrm{t}}$
d) Show that the value of the Poisson bracket $[\mathrm{Q}, \mathrm{P}]$ implies the symplectic condition
i.e. $\frac{\partial Q}{\partial p} \cdot \frac{\partial \phi}{\partial Q}=-\frac{\partial Q}{\partial p} \cdot \frac{\partial \Psi}{\partial q}$

UNIT - IV

4. a) State and prove the Liouville's theorem.
b) In a symmetry groups of mechanical systems obtain the identities.
$\left[\mathrm{L}_{\mathrm{i}}, \mathrm{L}_{\mathrm{j}}\right]=\epsilon_{\mathrm{ijk}} \mathrm{L}_{\mathrm{k}}$
$\left[D_{i}, L_{j}\right]=\epsilon_{i j k} D_{k}$
$\left[D_{i}, D_{j}\right]=\epsilon_{i j k} L_{k}$

OR

c) Show that the constants of the motion are the generating functions of those infinitesimal canonical transformations that leave the Hamiltonian invariant.
d) Discuss the symmetry groups of mechanical system.
5. a) Show that generalized momentum conjugate to a cyclic co-ordinate is conserved.
b) Obtain the Jacobi's form of least action principle.
c) Show that directly that the transformation $Q=\log \left(\frac{1}{q} \sin P\right), p=q \cot P$ is canonical.
d) Obtain the relations

$$
\dot{\mathrm{q}}_{\mathrm{i}}=\left[\mathrm{q}_{\mathrm{i}}, \mathrm{H}\right], \dot{\mathrm{p}}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{i}}, \mathrm{H}\right]
$$

